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Abstract-The use of the Jaumann stress rate, in kinematic hardening finite-strain plasticity, in the
case ofsimple shear generdtes oscillations in the stress field. Alternate theories have been introduced
to define other stress rates by making use of the polar decomposition and consequently producing
increasing shear stress. In this work, a Lagrangian formulation is introduced which, for the case of
simple shear produces monotonically increasing stress-strain relationships. The yield criterion is
originally expressed in terms of the Cauchy stress and subsequently transformed to the Lagrangian
reference frame. The associated flow rule used here preserves the normality rule in the second Piola­
Kirchhoff stress space and is equivalent to that of the Cauchy stress space. This approach preserves
the accuracy of the interpretation of the material behavior in the Eulerian reference frame and it
also bypasscs the usc of the Jaumann stress rate in the formulation of kinematic hardening finite­
strain plasticity.

NOTATION

The following symbols are used in this paper:
material strain tensor
material description ofdisplacement of body
spatial description of displacement of body
Jacobian
material form of displacement vector
material form of velocity vector
spatial form of velocity vector
material strain rate tensor
spatial strain rate tensor
material, or Piola-Kirchhoff, stress tensor
stress rate in terms of material stress tensor
loading function
deviatoric component of the shift stress tensor in Eulerian coordinates
deviatoric component of the Cauchy stress tensor
rate of plastic work
plastic component of the spatial strain rate tensor
scalar function
plastic component of the material strain rate tensor
elastic-plastic moduli matrix
elastic moduli matrix

INTRODUCTION

In a number of recent papers[I-4], the non-applicability of the Jaumann stress rate to
kinematic hardening elasto-plastic constitutive models that display finite strains was pointed
out. In these references, it was concluded that an oscillatory shear stress is predicted for a
monotonically increasing simple shear strain when the Jaumann stress rate is used in a
kinematic hardening model.

A number of stress rates were proposed[2-4] to remedy the oscillatory behavior of the
shear stress. In ref. [4], the proposed stress rate was compared to the solution obtained
using the Green-Naghdi rate, based on a Lagrangian definition of the yield criterion. This
is a different yield criterion than the von Mises yield criterion used in the above references
in conjunction with the proposed co-rotational stress rates.

In ref. [2], a modified Jaumann stress rate was developed and its applicability was
demonstrated for the specific problem of simple shear. The generalization of this modified
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Jaumann derivative to the three-dimensional case is not yet demonstrated. In a recent
paper[5], it was pointed out that the problem with stress rates is mainly due to the im­
proper generalization of the infinitesimal strain theories to the finite strain case. Gener­
alized stress rates are introduced in ref. [5] to correct the anomalies introduced by kinematic
hardening plasticity models that display finite strains.

An alternate approach is being presented here. The yield criterion is originally expressed
in terms of the Cauchy stress and subsequently transformed to the Lagrangian reference
frame. The associated flow rule used here preserves the normality rule in the second Piola­
Kirchhoff stress space and is equivalent to that of the Cauchy stress space. Although this
approach preserves the accuracy of the interpretation of the material behavior in the
Eulerian reference frame, it bypasses the use of the Jaumann stress rate in the formulation
ofkinematic hardening finite-strain plasticity.

THEORETICAL FORMULATION

A yield criterion of the von Mises type in terms of the Cauchy stresses is used. This
loading function combines both isotropic and kinematic hardening of the Prager-Ziegler
type[6]. It is expressed as

(I)

where a.k / is the deviatoric component of the shift stress tensor in Eulerian coordinates, lkl

is the deviatoric component of the Cauchy stress tensor, the constant k describes the initial
yield stress, and c is a constant that controls the isotropic hardening.

(2)

is the rate of plastic work and dk/ is the plastic component of the spatial strain rate tensor
where

(3)

In eqn (3), v is the spatial form of the velocity and z is the spatial description of the
displacement of the body.

The corresponding associated flow rule is described as

(4)

where A is a scalar function. The absence of plastic volumetric strain can be verified in eqn
(4) where dkk = O. Equations (1) and (4) incorporate a number of generally accepted
assumptions regarding the plastic deformation of metals. This constitutive model produces
no plastic volumetric strains. The hydrostatic state of stress even at large strains has no
effect on the plastic behavior of metals in this model. Finally, the von Mises yield criterion
and the associated flow rule are satisfactory forms ofeqns (I) and (4), respectively, in the
small deformation theory of plasticity of metals.

For the development of the incremental constitutive tensor DABeD, the following
decomposition of the Lagrangian strain rate is assumed

(5)
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The terms e~B and e~B are the "elastic strain" and the "plastic strain", respectively. In
general, the kinematic interpretation of these two components is not the usual one. Instead
they are simply mathematical quantities defined by the constitutive law. Nevertheless, when
the elastic strains are small compared to the plastic ones (an assumption that is satisfied in
a considerable number of applications), the decomposition of eqn (5) acquires the usual
physical meaning.

The constitutive model given by eqns (I) and (4) is in a Eulerian reference frame. For
this model to be applied in a Lagrangian frame of reference, coordinate transformations
need to be made.

In order to express relations (I) and (4) in the Lagrangian reference frame, certain
relations need to be used. Let

(6)

where

(7)

A is the equivalent Lagrangian counterpart of the spatial shift stress tensor (J.klo

(8)

and x is the material description of the displacement of the body. In the above equations,
we have

A _ OAAB (9)AB - at

and

." oe~B (10)eA11 =--at

where e~B is the material plastic strain rate. In general in this text, superdot implies material
time differentiation.

Equation (I) may now be expressed in the Lagrangian reference frame as

I 2 I [ 2 I 2J+ "jSABAcoCABCCOJ- +"2 AABAcoCACCBOJ- - "jAABAcoCABCCDJ-

-k 2 -cJC=O. (11)

In eqn (11) SAB is the second Piola-Kirchhoffstress tensor

(12)

SAS 21: I-G
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and CAB is the Green's deformation tensor

(13)

It can be clearly seen from eqns (10) and (II) that the Lagrangian formulation presented
here is distinctly different from Green and Naghdi's formulation[7,8]. In particular, the
yield function of eqn (11) has the general form

(14)

as opposed to that proposed by Green and Naghdi[7], which has the general form

(15)

In the case of metal-plasticity, the loading function expressed by eqn (11) which is an
interpretation of the von Mises yield criterion in the Langrangian reference frame, best
interprets the behavior of metals at finite strains[9, 10]. This was demonstrated primarily
in aluminum alloys (2024 T4 and 6061 T6) and steel (1180 cold rolled)[9, 10].

In addition, it has been shown[lO, 11] that eqn (4) is equivalent to the Lagrangian
expression for the flow rule

(16)

where

(17)

when the yield function is expressed as eqn (11). The normality rule proposed by Green
and Naghdi[7] implies normality in the Eulerian frame on a yield function of the form

(18)

Based on the concepts proposed by Shield and Ziegler[6, 12], it is assumed that the
yield surface moves in the direction of the radius connecting the center C of the yield surface
with the stress point P (Fig. 1). Consequently, the hardening rule is expressed by

(19)

where fi must be positive, and is calculated assuming that the projection of AAB on the stress

t moves in direction of CP

Fig. I. Modification of Prager's kinematic hardening rule by Shield and Ziegler[6. 12].
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gradient of the yield surface equals be~B' The procedure to obtain Ii is outlined in the
following:

of of

." • OSCD OSAB
beAB = A CD of of

----
OSMN OSMN

where b is a material parameter, and

of of
----

." A of 1 . OSCD OSAB
eAB= OSAB = "b(scD-AcD)/J of of

----
OSMN OSMN

hence

of of
----

. = Ab OSMN OSMN
/J of .

(scD-AcD)-:l­
vSCD

(20)

(21)

(22)

The development of this theory is based on the concept that the yield function given
by eqn (II) is at all times equivalent to its spatial counterpart, eqn (I). Nevertheless, the
evolution of its terms, expressed by eqns (16) and (19), does not necessarily yield equivalent
evolution to the more usual spatial expressions. Although, in the absence of kinematic
hardening, it can be shown[IO, 11] that eqn (4) is equivalent to the Lagrangian expres­
sion (16), eqn (19) is not equivalent to the usual Ziegler type shift evolution equation
!Xkl = (tkl-a.kl)/i, where the superposed symbol· implies Jaumann rate. Further study is
needed in this direction so that the implications ofeqn (19) are fully understood and properly
evaluated. Nevertheless, one should realize that the development of this formulation is
consistently carried in the material reference frame, where the yield function is defined by
eqn (II). and the evolution of its terms are defined by eqns (16) and (19).

The parameter A is calculated from the consistency equation:

(23)

hence

(24)

Following the procedure outlined in ref. [10], the expression for A is obtained:

(25)

where

of of----
of of of of I of OSMN OSMN

Q = EABCD-:l- -;--s - -;-SAB-:l-J- - ~A (SAB-AAB)b :lr' (26)
VSCD v AB vK VSAB v AB (A ) VJ

SQR- QR-­
OSQR
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In expressions (25) and (26). the modulus of elasticity EABCD takes the following form

(27)

if a linear elastic relation is assumed between the second Piola-Kirchhoff stress tensor and
the material elastic strain tensor

(28)

Equation (28) will be referred to as Lagrangian linear elasticity.
The e1asto-plastic stiffness matrix which corresponds to the loading function

f(SAS. AAB' K, eAS, J) given by relation (11) is the following expression[IO, II]

where

(30)

The incremental elasto-plastic constitutive relation can now be expressed as follows

(31)

In the case of a linear elastic relation between the Cauchy stress tensor and the spatial
elastic strain tensor (Eulerian linear elasticity)

(32)

the incremental elasto-plastic constitutive relation is expressed by

(33)

where jjABeD is derived and given in the appendix.

APPLICATIONS

Uniaxial test
A number of uniaxial loading-reverse loading tests are performed on specimens made

of aluminum alloy 2024-T4 (E = 10,600 psi, v = 0.25) in order to enable us to check the
validity of the proposed constitutive model. The separate cases of kinematic hardening,
isotropic hardening, and kinematic-isotropic hardening are considered.

To evaluate the parameter b, eqn (20) reduces, for the case of uniaxial loading, to the
following:

(34)
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Due to the lack of plastic volumetric strains

and the axi-symmetric nature of the problem, eqn (34) reduces further to:

101

(35)

(36)

For small increments of load, eqn (36) is used to evaluate the parameter b as a function
of the second deviatoric stress invariant. When the strains are not very large «40%),
eqn (36) can be approximated by

(37)

For a uniaxial state of stress in the case of kinematic hardening, the shift tensor rate
..4..cB is equal to the stress rate SAB' This observation enables us to calculate flA AB • Referring
to Fig. 2, flA II is evaluated using the following relation:

(38)

where Sn+ I is the yield stress at the end of the stress increment and Sn is the yield stress at
the beginning of the load increment. In this manner, b can be calculated from eqn (36) or
(37) as a function of the second deviatoric stress invariant.

For the case of isotropic hardening only, the parameter c is calculated based on
Fig. 3 to be

(39)

For the combined case of isotropic and kinematic hardening in a uniaxial state of
stress, the stress rate and the shift tensor rate are not equal but still have the same direction.
Referring to Fig. 4, flA I I and the isotropic hardening parameter c are evaluated making use

522
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Fig. 2. Case of kinematic hardening.
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Fig. 3. Case of isotropic hardening.

of the following relations:

(40)

(41)

For small increments of stress

(42)

Consequently, eqns (40) and (41) reduce to:

(43)

(44)

The super bar on the stresses denotes compression. In eqns (40H44), s is positive in tension,
and s is positive in compression. The increment in plastic work .11<: is equal to the shaded
areas in Figs 3 and 4.

Equations (36H44) can be used to calculate the parameters c and b for each particular
case of hardening presented above.

In Figs 5-7, the experimental and the theoretical results for the three cases ofhardening
are presented for two uniaxial loading-reverse loading tests. It is noted in these figures
that the experimentally obtained values of the elastic modulus decrease as defonnation
progresses. This phenomenon is not incorporated in the theoretical analysis.

It is observed in Figs 5-7 that kinematic hardening underestimates the stresses during
reverse loading, while isotropic hardening overshoots the experimental results. The com­
bined use of kinematic and isotropic hardening predicts the experimental results best. The
difference in results obtained between the Lagrangian linear elasticity and the Eulerian
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Fig. 4. Case of kinematic and isotropic hardening.

linear elasticity is not significant. This is due to the fact that for the strains obtained here
« 10%), the elastic stiffness tensors given by eqns (27) and (30) are not appreciably
different.

Simple shear prohlem
Due to the recent findings in refs [1-3], the simple shear problem has been estab­

lished as a checker of the definitions of stress and shift tensor rates. For this purpose,

843
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Fig. 5. Theoretical and experimental relations between material strain e II and Piola-Kirchhoff stress
S II for kinematic hardening.
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Fig. 6. Theoretical and experimental relations between material strain eI! and Piola-Kirchhoffstress
S" for isotropic hardening.
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Fig. 7. Theoretical and experimental relations between material strain eII and PioJa-Kirchhoffstress
S I I for kinematic and isotropic hardening.
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it is considered appropriate that the simple shear problem be solved with the proposed
herein theory. Let

or

k = 1,2,3

A = 1,2,3

(45)

(46)

where XA and Zk are respectively the material and spatial descriptions of the displacement
of the body in rectangular Cartesian coordinates at time t. The components of u are related
to Zk and XA by

Uj = Zj-Xj i = 1,2,3. (47)

In the case of simple shear, the displacement field is given by

(48)

and the velocity field by

(49)

The material strain tensor e, is given by

0
kt

0
2

kt ~(kt)2 0 (50)e=
2

0 0 0

Shear strains up to 450% are obtained for three different values of the parameter b.

_._._.!.v !!. Linear Elastic Relation

! v !. Linear Elastic Relation

400.0

300.0

200.0

L..-----'-------L.---..I---.....L..__......l__ 'Y
1.0 2.0 3.0 4.0 5.0

Fig. 8. Shear stress variation.



106 G. Z. VOYIADJIS and P. D. KIOUSIS

900

800

700

600

500

400

300

200

100

_._._.!. v ~ Linear Elastic Relation

--- s v e Linear Elastic Relation

_ b' 100 ksi
/' ..-:_ b' 80 ksi

/ .. /.-:., .... b= 60 ksi
./ .

~'/'-

.~~.- ..;;....
OO:;'---J.._--'-_...L.-._"----'- y

1.0 2.0 30 40 5.0

Fig. 9. Normal stress variation.

The plots of shear stress t 12 vs shear strain y = kt, and the nonnal stress tIl VS yare shown
in Figs 8 and 9, respectively. It is demonstrated in these figures that a monotonically
increasing relationship for stresses and strains is predicted for both cases of linear elastic
relations between the second Piola-Kirchhoff stress vs material strain, and the Cauchy
stress vs the spatial strain.

The difference in the response of the two materials, the one obeying Lagrangian linear
elasticity and the other obeying Eulerian linear elasticity, is attributed mainly to their
different elastic behavior. As indicated in Figs 10(a) and (b), the assumption of Lagrangian
linear elasticity implies a continuously increasing Eulerian elastic stiffness. Since the Eulerian
stress is the "real" stress, it is concluded that for the simple shear problem the Lagrangian
linear elastic material is stiffer than the Eulerian linear elastic material when both materials
have the same elastic constants (E, v).

2. 5 12

'12'S,2

5
""

5
""

---512 5 12
---"2 ---'12

(a)
)f2

(b)
rJ2

Fig. 10. (a) Elastic simple sbear response for tbe material obeying Lagrangian linear elasticity.
(b) Elastic simple shear response for the material obeying Eulerian linear elasticity.
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SUMMARY AND CONCLUSIONS

A procedure is introduced in this work in order to bypass the use of the stress rate in
the Eulerian reference frame. The yield condition and associated flow rule are properly
transformed to the Lagrangian reference frame from the Eulerian coordinate system. The
Lagrangian stress rate is then used as an objective stress rate. This approach preserves the
accuracy of the interpretation of the material behavior in the Eulerian reference frame and
it also bypasses the problem of the correct identification of a proper stress rate in the
Eulerian reference frame.

Both Lagrangian and Eulerian linear elasticity relations are considered in this work to
demonstrate the importance of such a choice. Assuming the same parameters for both
cases, the material obeying the Lagrangian linear elasticity shows a much stiffer behavior
in simple shear. It is also interesting to note that for the material obeying Lagrangian linear
elasticity, the normal stress til is predicted to be larger than the shearing stress t l2 which
is a rather unexpected behavior. The reverse situation is observed for the case of Eulerian
linear elasticity. It is the authors' opinion that the Eulerian linear elasticity should therefore
be used in spite of the complexity involved in calculating the incremental elastic stiffness
tensor [eqn (A I 0)].

The procedure in this work is limited to metal plasticity displaying material incom­
pressibility and the use of an associated flow rule.
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APPENDIX: CALCULATION OF THE INCREMENTAL ELASTIC STIFFNESS
MATRIX EABeD FOR THE CASE OF EULERIAN LINEAR ELASTICITY

Assuming the linear elastic relation between the Cauchy stress tensor and the spatial strain tensor (Eulerian
linear elasticity), we obtain

(AI)

where;' and p are Lame's constants. Making use of the following two expressions

(A2)
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and

then, eqns (AI) may be expressed as
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(A3)

or

(A4)

(AS)

Equation (AS) may be recast as

(A6)

By differentiating eqn (A6) with respect to time in the Lagrangian reference frame, we obtain the following relation

.iAN = [)JCA~Ccri +}JC;;~Ccri + }JC;;~Ccri+Ill(C;;c'Ciiri +C.giiri +C.ri Ciid +CAri Ciid)

+}J(C;;dCii~+ C;;~Ciid»)e'cD+[}Jc.~Ccri +Ill(C;;dCii~ + c.~Cid)le'cD = F~B"'Ne"lN+ F~B"'Ne'.,N; (A7)

or

(A8)

where

F~BMN = J[A.CM~C.~CCri - A.Cc~(C;;;'Ci~ + Ci~C.~) - A.C.~(CM~Ci'J +Ci'iCMb)

-/lCi~ (C.;'Cc~ + Cc;'C;;~) -/lC.d(Ci~CD~+CD;'Ci~) -/lCid(C.~CD~+ CD;'C.~)

-/lC.J(Ci~Cc~ +Cc;'Ci~)+ /lC.ii~C.iCiiri + C.~Cii)le'cD (A I0)

and

(AI2)

The parameter Ain eqn (22) is calculated from the consistency eqn (24), or

of. of _1 of of .+ -~-eAB+ ~J SAaA~ + ~JRCoeCD = O. (AI3)ueAB uK uSAB u

Solving for A from eqn (Al3), we obtain

(A14)

where

(AlS)

From eqns (A8) and (AI4), we obtain

(A16)
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where

In eqns (AI3), (AI4) and (AI?), RpQ is expressed as
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(AI?)

(AI8)


